Defeating TLS client authentication
using fault attacks

hardwear.io
VIRTUAL CON 2020

Hacking, Community and Hope

Who are we ?

* R&D dept. @ e Security Evaluation
Kudelski Security Lab @ Kudelski loT
* Embedded systems Hardware attacks
security research - Glitch / EM
- Reverse engineering — Lasers |

KUDELSKI g8 loT
SECURITY NAGRA ..

Introduction

 |n more and more use cases we have an embedded device
which communicates with a cloud.

* The device (usually) authenticates itself to guarantee data
origin.

 Some of the devices are low cost and have no physical
security.

TLS (in a nutshell)

TLS 1.2

Transport Layer Security replaces Secure Sockets Layer

De facto standard (the s of https and green lock in the browser)
Current version is TLS 1.3 released in 2018.

TLS 1.2 is still massively used.

Used in loT for mutual authentication with the cloud.

Amazon Web Services loT

4

AWS loT

AWS loT is a managed cloud platform that lets connected devices - cars,
light bulbs, sensor grids, and more - easily and securely interact with cloud
applications and other devices.

Get started

AWS loT authentication

 TLS 1.2 authentication is used by AWS loT to identify devices.
* AWS FreeRTOS uses mbedTLS from ARM to implement TLS.

* AWS loT cloud supports the following cipher suites:
ECDHE-ECDSA-AES128-GCM-SHA256 (recommended)
ECDHE-RSA-AES128-GCM-SHA256 (recommended)
ECDHE-ECDSA-AES128-SHA256

AWS loT authentication

Client certificate and private key are in the firmware:

TLS 1.2 handshake

Client Server

{8

Client Hello

Server Done

Certificate Verify

Certificate Verify signature

~ Secure Sockets Layer
+ TLSv1.2 Record Layer: Handshake Protocol: Certificate Verify
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 79
~ Handshake Protocol: Certificate Verify
Handshake Type: Certificate Verify (15)

Length: 75
v Signature Algorithm: ecdsa_secp256rl_sha256 (@x0403)

Signature length: 71
Signature: 3045022100dfd82db791dd2e4453ce7218ee5b5556455960h. ..

10

Elliptic Curve Digital Signature Algorithm
(in a nutshell too)

ECDSA signature

* TLS allows using RSA or ECDSA as signhature algorithms.

« ECDSA has the advantage to have smaller key lengths for the
same security level.

* Performance of ECDSA Is better for signature.

Perfect signature algorithm for loT.

12

ECDSA

From d, the device private key, the signature is computed over
the elliptic curve:

)=k-P
X

=k '(h+rd)

X

A\)

(

The output signature is (r, s).

The nonce k must be generated randomly and must be unique.
13

ECDSA attack

From r it is not possible to recover the value of k (discrete
logarithm).

But if two different messages have been signed with the same
nonce then it is possible to recover K.

Then with k we can recover d the private key directly.

2010: PS3 signature key recovery

fallQuerfill, .

Fault attacks on ECDSA

If we are able to set the nonce to a known value or to reduce
Its entropy then the private key can be recovered with:

d=(ks—h)r "

h i1s known since it is the hash of previous handshake messages

15

MbedTLS implementation

mbedTLS

Used in a lot of embedded SDKs

“mbedTLS offers an SSL library with an intuitive APl and
readable source code, so you can actually understand
what the code does.” (tls.mbed.org)

We analyzed the code until we reached the nonce generation

17

MbedTLS implementation

The nonce Is generated in the mbedtls_ecp_gen_privkey in ecp.c:

it defined
if{ ecp get type(grp) == ECP TYPE SHORT WEIERSTRASS)
]

count = @;

(mbedtls mpi fill random(d, n size, f rng, p rng));
(mbedtls mpi shift r{ d, 8 * n size - grp-=nbits)); 18

MbedTLS implementation

. mbedtls mpi read binary(mbedtls mpi *X, s signed char *buf, size t buflen)

ret;
ize ki],
ize t limbs = CHARS TO LIMBS(buflen);
T(X != NULL };
(buflen == @ || buf !=

P A P

if(X->n != limbs)
{

mbedtls mpi free(X);

mbedtls mpi init(X);

MBEDTLS MPI CHK(mbedtls mpi grow(X, limbs));
}

MBEDTLS MPI CHK(mbedtls mpi lset(X, ©));

for(i = buflen, j =0; 1 >0; i--, j++)
X->plj / ciL] |= ((mbedtls mpi uint) buf[i - 11) << ((j % cil) << 3);

MbedTLS random nonce generation

Fill a buffer with random values:
Depending on SDK/target, will use the hardware RNG
Convert the buffer to a mbedtls_mpi value:
Converts buffer from big- to little-endian...
By copying the buffer bytes to dword

20

Attack ldea

* Generate a lookup table containing small nonces multiplied by
the generator /1.e. with records (k, k - P).

* Insert a fault to exit the buffer copy loop earlier.

* The resulting nonce value may be truncated (32 bits).

* If the resulting signature is in our table then we can recover the
nonce and then private key !

21

Code protection ?

* Return value is uninitialized at the beginning of the function
 Compiler initializes the value to O...
* Function returns O if successful

22

Exploitation

ESP32

System-on-Chip manufactured by Espressif
Widely deployed on the field
Supported by AWS loT
Integrated Wi-Fi

Vulnerable to voltage glitch

24

Previous fault attacks on ESP32

* LimitedResults:
- Voltage glitch
- Effects used to
* Bypass AES encryption
* Bypass secure boot
e Extract flash encryption and secure boot keys

25

ESP32 power domains

WDO_EDID

Figure 4: ESP32 Power Scheme

Voltage glitch on

=
=

-
.y

=%
P

= | =]
B L

P32

? il
) L AL ZL T OO0 ;—
=z g 0D
LA LI/ O Q
@ Uogﬁﬁgiggi C4 :.I: VDD33
kR G230 0.1uF T
VDDA GPIO19 g? Lty
LNA_IN VDD3P3_CPU & GPI023
VDD3P3 GPI023 [55 GrI018
VDD3P3 GPIO18 37 GPIOS
SENSOR_VP GPIOS 33 SDISD1
SENSOR_CAPP SD_DATA 1 35 500500
SENSOR_CAPN SD_DATA 0 33 SCRICLK
SENSOR_WN SD_CLK .

» - 30 SCSICMD
CHIP_PU SD_CMD |59 SWPISD3
VDET_1 SD_DATA 3 [5g SHD/SD2
VDET 2 SD_DATA 2 57 GPIO1T
32K_XP GPIOT7 55
32K XN O VDD _SDIO
32K X Eu epiors |25 GPIO16

0825559883 1 VDD_SDIO
[e = = ——C18
AOZEZ=E>=E=Z2000 1uF
Uz R ESP32-DOWD 1

| | o e e e e =

GND YDD33

s}

sl 2elale —
glelole| clleleld €19
flzlElE| ZEEIERE | 0.1uF
olo|ojo| olojolola ——

GND

27

ESP32 preparatlon

28

ESP32 preparation

J NATHOSNIS
2 dATHOSNIS
ThE

29

Chipwhisperer setup

* Voltage glitch was generated by Chipwhisperer using

crowbar method.

__

iExternal power supply ! iChipWhisperer i iIESP32 breakout
| | Ry
i Lo . 3
| +3.3V R1 o N =—| VDD3P3
| — L I 37
|] — ——e =7 VDD3P3_CPU
b P VDD3P3_RTC
. | [CONTROL 79t RRSTD—— 9 { CHIP_PU
R S 40
TIO1 » T i1 UORXD
TIOZ ; i UOTXD
END L E——ﬂﬂ— GND
P GND

__

U1 ,
ESP32 |

30

Chipwhisperer setup

v
| ‘ A
= |

31

Voltage [V]

ESP32 start-up

16 A

14 A

12 A

10 A

— VCC CPU

—— Enable signal

—— ECDSA operation
—— UART synchronization

4
Time [s]

32

[V]

Glitch shape

.

2.5 A

2.0

1.5 1

1.0 1

0.5 A

0.0 -

—0:5 o

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
[us]

1.0

1.2

33

Lookup table

* We generated a lookup table for k from 1 to 232, around
300GB.

* |t took two days to generate the table but then one
lookup takes 5s.
* The table is similar to the one used during an attack

against Bitcoin signature.
(https://github.com/nomeata/secp265kl-lookup-table.)

34

Key recovery

* The network was probed and each signature was recorded

with the corresponding hash of the previous handshake
messages

 If the signature is in our database:

35

Quick win

* During the tests, we found a glitch point that fixes the nonce
to OXFFFFFFFF
* Eases the cracking process

36

Disclosure

MbedTLS implementation

* The call to read_binary was removed from version after
2.16.1 of mbedTLS for performance reasons. But it was still
iIncluded in ESP32 software until February 2020.

* (Un)fortunately, there are other ways to attack the signature
with the same results (CTR_DRBG or HMAC_ DRBG).

38

MbedTLS implementation

if{ (ret = mbedtls md hmac starts(&ctx->md ctx, ctx->V,
mbedtls md get size(md info)

return{ ret);

]

memset(ctx->V, 0x01, mbedtls md get size(md info));

(ret = mbedtls hmac drbg update ret(ctx, data, data len))
return(ret });

r

39

Disclosure

We contacted ARM with full detalls of our attack.

We suggested to change the default return value to
something else in our responsible disclosure

About one month later :

“I...]We generally consider hardware fault attacks out of scope of
the Mbed TLS threat model. However, we are happy to work with
you on this issue and follow coordinated disclosure with the fix.

No more communication from ARM since then

40

NoO response ?

Initialise return values to an error

Browse files

Initialising the return values to and error is best practice and makes
the library more robust.

p development (#3085) © mbedtls-2.22.0

H yanesca committed on Nov 22, 2019

Showing 43 changed files with 322 additions and 279 deletions.

v 35 mEEm" library/bignum.c EL

12 08 -46,6 +4

#include
#include
#include
+ #include

#include

Hi
L

6,7 0@

"mbedt 1s/bignum.hn"
"mbedtls/bn_mul.h"
"mbedt ls/platform_util.h"
"mbedtls/error.h"

<string.h=

1 parent al3b985 commit 24eed8d2d2df4423a63c876ledddd65a43Tre3a3

Unified | Split

@3 -314,7 +315,7 @@ int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char sw

int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)

{

- int ret;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION DETECTED;
MPI_WALIDATE_RET({ X '= NULL),

41

09/09/2019
09/27/2019
11/22/2019
02/12/2020
Now

Timeline

. Vulnerability reported to ARM.

. ARM acknowledge the vulnerability.

: ARM hardened the library with error status.
. Espressif upgraded to mbedTLS v2.16.5.

. Vulnerability still exists.

42

Possible countermeasures

e UseTLS 1.3

- Handshakes are encrypted
 Use RSA for authentication ?
 Use a hardware secure element

43

Conclusions

Takeaways

* Full key recovery is possible using a single fault.
* This attack is not related to the target platform.
» Software hardening must be implemented carefully.

45

Questions ?

46

Backup slides

47

Previous attacks on ECDSA

2014: “Ooh Aah... Just a Little Bit”

2019: Biased Nonce Sense: Lattice Attacks against Weak
ECDSA Signatures in Cryptocurrencies

2019: TPM.fall
2019: Minerva

48

Previous fault attack on TLS

e Attacking Deterministic Sighature Schemes using Fault
Attacks (Poddebniak et al.):
* Rowhammer on deterministic ECDSA and EdDSA.
e Server attack.
* Needs one faulted and one correct signature for the same
message.
* Degenerate Fault Attacks on Elliptic Curve Parameters in
OpenSSL (Takahashi et al.):
e Fault attack on point decompression.
* Application on OpenSSL running on Raspberry Pie.

49

Degenerate Fault Attacks

5

mpg commented on Feb 7, 2019 Contributor +@.

Support for compressed format has been deprecated by RFC 8422 in the context of TLS, which reflects
a more general sentiment in the ECC community to prefer uncompressed format. Also, implementing it
correctly for all supported curves would require substantial code, impacting our footprint - and the
present PR would require non-trivial rework (values of P not congruent to 3 mod 4, unit tests) before if
would be ready for merge.

At this point, we're unlikely to want to add that amount of code for a feature that's formally deprecated
in TLS and being abandoned more generally, so I'm closing this PR.

Thanks for your contribution and interest in Mbed TLS anyway.

@ 4 mpg closed this on Feb 7, 2019

50

ESP32 preparatlon

T, B
3U3 pce PCY PCi® PC11 P12 PCA3 PC14 PCLS 5

1312

ESP32 Bottom

HydraBus 1_@ Shield ESP32
vi.@ Rev@ 21 Dec 2015
http://hydrabus.com

CC BY-SA 4.0

LALE L L d

m

3 |PB1@

' |pB11

J1 J4 . ‘Elwmﬁl ’i.ﬂa“ umm., ‘
GND pABPAS paie pAll PA12 PDZ BOOTA PA1S GND 102 : o
JZQOO‘ @) (@) (@) (@) 'OOO‘OIOOOOO OOQ'QF.. n

R (@)@ e e e e)e)e) al g xlw OO OO
e — LGWU' 2!
3Pﬂ7 PA& PAS PA4 PA3 PAZ PA1 PAB K GRO GNO 1015 102 1012 1027 !EI’Z EN 303

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

